The Magic of Modular Arithmetic
 "Pick a Number" Games and Credit Card Dissection

Eric Daniel Bancroft

NCSU
February 25, 2011

Most of us have played "pick a number" games at some point in our life you pick a number, go through some steps, and then the book or person with whom you're playing "magically" tells you your final output. Why do these work? What math is going on in the background?

Pick a number...

Pick a number...

(1) Pick a number from 1 to 9 .

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .
(3) Multiply the result by 9 .

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .
(3) Multiply the result by 9 .
(9) Add 6 to the result.

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .
(3) Multiply the result by 9 .
(9) Add 6 to the result.
(5) Sum the digits of the result.

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .
(3) Multiply the result by 9 .
(9) Add 6 to the result.
(5) Sum the digits of the result.
(0) Multiply the result by 2 .

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .
(3) Multiply the result by 9 .
(9) Add 6 to the result.
(5) Sum the digits of the result.
(0) Multiply the result by 2 .
(- Divide the result by 3 .

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .
(3) Multiply the result by 9 .
(9) Add 6 to the result.
(5) Sum the digits of the result.
(0) Multiply the result by 2 .
(1) Divide the result by 3 .
(8) Add 4 to the result to get a number - call it α

Pick a number...

(1) Pick a number from 1 to 9 .
(2) Add it to 4 .
(3) Multiply the result by 9 .
(9) Add 6 to the result.
(5) Sum the digits of the result.
(0) Multiply the result by 2 .
(1) Divide the result by 3 .
(8) Add 4 to the result to get a number - call it α
(9) Pick the largest (in land area) European country whose name starts with the $\alpha^{\text {th }}$ letter of the alphabet.

1. Austria
2. Belarus
3. Czech Republic
4. Denmark
5. Estonia
6. France
7. Germany
8. Hungary
9. Italy
10. (None start with J) 19. Spain
11. (None start with K) 20. (None start with T)
12. Lithuania
13. Moldova
14. Norway
15. (None start with O) 23. (None start with W)
16. Poland
17. (None start with Q)
18. Romania (unless you count Russia) 26. (None start with Z)
(10) Choose a color whose first letter is the last letter of the country you chose in the previous step.
(10) Choose a color whose first letter is the last letter of the country you chose in the previous step.
(1) You chose yellow.

Step 1 - "Pick a number from 1 to 9."

Step 1 - "Pick a number from 1 to 9."

Call it " n ". Clearly, $1 \leq n \leq 9$.

Step 2 - "Add it to 4."

Step 2 - "Add it to 4."

Now we have $n+4$, and so $5 \leq n+5 \leq 13$.

Step 3 - "Multiply the result by 9."

Step 3 - "Multiply the result by 9."

This gives us:

$$
9(n+4)=9 n+36
$$

Step 4 - "Add 6 to the result."

Step 4 - "Add 6 to the result."

So we get:

$$
9 n+36+6=9 n+42
$$

Step 4 - "Add 6 to the result."

So we get:

$$
9 n+36+6=9 n+42
$$

(We can think of this either way, but $9 n+36+6$ is a little easier to work with in the next step.)

Step 5 - "Sum the digits of the result."

This is the key step.

Step 5 - "Sum the digits of the result."

This is the key step. We're making use of the following theorem:

Step 5 - "Sum the digits of the result."

This is the key step. We're making use of the following theorem:
Theorem
Any integer a is congruent to the sum of its digits modulo 9.

Step 5 - "Sum the digits of the result."

This is the key step. We're making use of the following theorem:
Theorem
Any integer a is congruent to the sum of its digits modulo 9.

Corollary (you may have seen this before)

Step 5 - "Sum the digits of the result."

This is the key step. We're making use of the following theorem:
Theorem
Any integer a is congruent to the sum of its digits modulo 9.

Corollary (you may have seen this before)
An integer a is divisible by 9 if and only if 9 divides the sum of the digits of a.

Theorem

Any integer a is congruent to the sum of its digits modulo 9 .
What does this theorem mean?

Theorem

Any integer a is congruent to the sum of its digits modulo 9.
What does this theorem mean?

Theorem

Any integer a is congruent to the sum of its digits modulo 9.
What does this theorem mean?
Two numbers being "congruent modulo 9" means that the remainders are the same when we divide by 9

Theorem
Any integer a is congruent to the sum of its digits modulo 9.
What does this theorem mean?
Two numbers being "congruent modulo 9" means that the remainders are the same when we divide by 9

Example
38 and 2 are congruent modulo 9 since $38 / 9=4$ r 2 and $2 / 9=0$ r 2

If we divide $9 n+36+6(=9 n+42)$ by 9 , then we'll have a remainder of 6 (no matter which value of n we chose at the beginning).

If we divide $9 n+36+6(=9 n+42)$ by 9 , then we'll have a remainder of 6 (no matter which value of n we chose at the beginning).

So, by the theorem, the sum of the digits must be $6+$ (some multiple of 9), i.e., $6,15,24$, etc.

If we divide $9 n+36+6(=9 n+42)$ by 9 , then we'll have a remainder of 6 (no matter which value of n we chose at the beginning).

So, by the theorem, the sum of the digits must be $6+$ (some multiple of 9), i.e., $6,15,24$, etc.

Since our initial choice of n was from 1 to 9 , the sum of the digits of the number $9 n$ will be 9 (by the theorem), and the sum of the digits of the number $9 n+42$ will be less than or equal to

$$
9+4+2=15
$$

If we divide $9 n+36+6(=9 n+42)$ by 9 , then we'll have a remainder of 6 (no matter which value of n we chose at the beginning).

So, by the theorem, the sum of the digits must be $6+$ (some multiple of 9), i.e., $6,15,24$, etc.

Since our initial choice of n was from 1 to 9 , the sum of the digits of the number $9 n$ will be 9 (by the theorem), and the sum of the digits of the number $9 n+42$ will be less than or equal to

$$
9+4+2=15
$$

The only two numbers satisfying both of these conditions are 6 and 15 .

Step 6 - "Multiply the result by 2."

Since we know the result of step 5 is either 6 or 15, multiplying by 2 will yield 12 or 30 .

Step 7 - "Divide the result by 3."

This step leaves us with either 4 or 10 .

Step 8 - "Add 4 to the result to get a number - call it α "

Now we have 8 or 14 .

Step 9 - "Pick the largest (in land area) European country whose name starts with the $\alpha^{\text {th }}$ letter of the alphabet."

With any "magical pick-a-number" problem, we eventually need to get to the point where the person playing the game is forced into making a particular choice.

Step 9 - "Pick the largest (in land area) European country

 whose name starts with the $\alpha^{\text {th }}$ letter of the alphabet."With any "magical pick-a-number" problem, we eventually need to get to the point where the person playing the game is forced into making a particular choice. At this point in our game, the player will have chosen either Hungary or Norway. We haven't narrowed it down to one possibility yet, but since these words share the same last letter we can force a choice in the next step.

Step 10 - "Choose a color whose first letter is the last letter of the country you chose in the previous step."

Both of countries that the player could have chosen in the last step end in " y ", so we're finally down to one choice.

Step 11 - "You chose yellow."

Even if the player is trying to be difficult, there aren't really any options other than yellow :-)

Thank you!

References

- L.N. Childs, A Concrete Introduction to Higher Algebra, Third Edition, Springer Undergraduate Texts in Mathematics (Springer Science+Business Media, New York, 2009).
- http://www.nationsencyclopedia.com/Europe/index.html

