Definitions Related to Groups and Rings

Definition 1 (Group). A group is a set G with a binary operation * such that

- 1. G is closed under $*: a * b \in G$ for all $a, b \in G$.
- 2. * is associative: (a * b) * c = a * (b * c) for all $a, b, c \in G$.
- 3. There is an identity element: There exists $e \in G$ such that e * a = a * e = a for all $a \in G$.
- 4. Every element has an inverse: For all $a \in G$, there exists $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$.

We denote a group by (G, *) or simply G for short.

Definition 2 (Abelian Group). An *abelian group* is a group (G, *) such that * is commutative: a * b = b * a for all $a, b \in G$.

Definition 3 (Subgroup). A subset H of a group (G, *) that also forms a group under * is called a *subgroup*. To determine whether a given subset H is a subgroup we only need to check that

- 1. *H* is closed under *: For all $a, b \in H$, a * b is also in *H*.
- 2. *H* is closed under inverses: For all $a \in H$, a^{-1} is also in *H*.

Definition 4 (Ring). A ring is a set R with two binary operations \boxplus and \square such that

- 0. *R* is closed under \boxplus and \Box , i.e., $a \boxplus b \in R$ and $a \boxdot b \in R$ for all $a, b \in R$.
- 1. (R, \boxplus) is an abelian group.
- 2. \Box is associative, i.e., $(a \boxdot b) \boxdot c = a \boxdot (b \boxdot c)$ for all $a, b, c \in R$.
- 3. The distributive laws hold, i.e.,

$$a \boxdot (b \boxplus c) = (a \boxdot b) \boxplus (a \boxdot c)$$

and

$$(b \boxplus c) \boxdot a = (b \boxdot a) \boxplus (c \boxdot a)$$

for all $a, b, c \in R$.

We denote a ring by (R, \boxplus, \boxdot) or simply R for short. The identity element for \boxplus is called the *additive identity* element and denoted by 0 or 0_R .

Definition 5 (Commutative Ring). A *commutative ring* is a ring such that \Box is commutative, i.e., $a \boxdot b = b \boxdot a$ for all $a, b \in R$.

Definition 6 (Unity). A ring with unity is a ring that has a multiplicative identity element (called the *unity* and denoted by 1 or 1_R), i.e., $1_R \boxdot a = a \boxdot 1_R = a$ for all $a \in R$.

Our book assumes that all rings have unity.

Definition 7 (Zero Divisor). $a \in R - \{0_R\}$ is called a *zero divisor* of a ring R iff there exists $b \in R - \{0_R\}$ such that $a \boxdot b = 0_R$ or $b \boxdot a = 0_R$. (So, neither a nor b is equal to 0 but their product is 0, i.e., you can multiply two non-zero things together and get zero.)

Definition 8 (Integral Domain). An *integral domain* (or simply domain) is a commutative ring (with unity) that has no zero divisors.

Definition 9 (Unit). $a \in R - \{0_R\}$ is called a *unit* of a ring R iff there exists $b \in R$ such that $a \boxdot b = b \boxdot a = 1_R$. (So, the units are the elements which have multiplicative inverses.)

Definition 10 (Division Ring). A *division ring* is a ring (with unity) such that every element except 0_R is a unit (i.e., every non-zero element has an inverse).

To show that a ring is a division ring, it is sufficient to show that $(R - \{0_R\}, \Box)$ is a group.

Definition 11 (Field - short definition). A *field* is a commutative division ring.

To show that a ring is a field, it is sufficient to show that $(R - \{0_R\}, \boxdot)$ is an abelian group.

Definition 12 (Field - long definition). A *field* is a set R with two binary operations \boxplus and \square such that

- 0. R is closed under \boxplus and \boxdot ,
- 1. (R, \boxplus) is an abelian group,
- 2. \Box is associative,
- 3. the distributive laws hold,
- 4. there is a unity,
- 5. \Box is commutative,
- 6. and every non-zero element is a unit.