The Hat Check Problem

Where’s my hat?

A group of n hat-wearing people enter a restaurant and leave their hats with the hat check girl, who is new on the job and forgets to put the ticket stubs with the correct hats. As a result, when the group leaves everyone is given a random hat from the n hats. What is the probability that no one gets his own hat back?

If we view this through the lens of permutations, we are trying to find the probability that a random permutation (on a set $A = \{a_1, a_2, \ldots, a_n\}$ of n elements) contains
The Hat Check Problem

Where’s my hat?
A group of n hat-wearing people enter a restaurant and leave their hats with the hat check girl, who is new on the job and forgets to put the ticket stubs with the correct hats. As a result, when the group leaves everyone is given a random hat from the n hats. What is the probability that no one gets his own hat back?

If we view this through the lens of permutations, we are trying to find the probability that a random permutation (on a set $A = \{a_1, a_2, \ldots, a_n\}$ of n elements) contains no fixed points.
Let A_i be the event “a_i is a fixed point,” i.e., “person a_i gets his own hat back.” Then
Let A_i be the event “a_i is a fixed point,” i.e., “person a_i gets his own hat back.” Then

$$P(A_i) = \frac{1 \cdot (n - 1) \cdot (n - 2) \cdot \cdots \cdot 1}{\text{total number of permutations}}$$

$$= \frac{1 \cdot (n - 1)!}{n!}$$

$$= \frac{1}{n}$$
Let A_i be the event “a_i is a fixed point,” i.e., “person a_i gets his own hat back.” Then

$$P(A_i) = \frac{1 \cdot (n - 1) \cdot (n - 2) \cdots 1}{\text{total number of permutations}}$$

$$= \frac{1 \cdot (n - 1)!}{n!}$$

$$= \frac{1}{n}$$

Note: This includes the permutations where people other than a_i get their own hats back, too.
Similarly, the probability that [at least] people a_i and a_j are fixed points (i.e., at least a_i and a_j get their hats back) is
Similarly, the probability that [at least] people \(a_i \) and \(a_j \) are fixed points (i.e., at least \(a_i \) and \(a_j \) get their hats back) is

\[
P(A_i \cap A_j) = \frac{1 \cdot 1 \cdot (n - 2) \cdot (n - 3) \cdots \cdot 1}{n!} \\
= \frac{(n - 2)!}{n!} \\
= \frac{1}{n(n - 1)}
\]
Similarly, the probability that [at least] people a_i and a_j are fixed points (i.e., at least a_i and a_j get their hats back) is

$$P(A_i \cap A_j) = \frac{1 \cdot 1 \cdot (n-2) \cdot (n-3) \cdots 1}{n!}$$

$$= \frac{(n-2)!}{n!}$$

$$= \frac{1}{n(n-1)}$$

So to find the probability of having at least one fixed point, we use inclusion/exclusion:
Similarly, the probability that [at least] people a_i and a_j are fixed points (i.e., at least a_i and a_j get their hats back) is

$$P(A_i \cap A_j) = \frac{1 \cdot 1 \cdot (n-2) \cdot (n-3) \cdots \cdot 1}{n!}$$

$$= \frac{(n-2)!}{n!}$$

$$= \frac{1}{n(n-1)}$$

So to find the probability of having at least one fixed point, we use inclusion/exclusion:

$$P(\text{at least one fp}) = \text{(ways to ensure one fp)} - \text{(ways to ensure two fp)}$$

$$+ \cdots + (-1)^{n-1}\text{(ways to ensure n fp)}$$
This yields

\[P(\# fp \geq 1) = \left(\frac{n}{1} \right) \frac{1}{n} - \left(\frac{n}{2} \right) \frac{1}{n(n-1)} + \left(\frac{n}{3} \right) \frac{1}{n(n-1)(n-2)} - \]

\[\cdots + (-1)^{n-1} \left(\frac{n}{n} \right) \frac{1}{n!} \]

\[= n \frac{1}{n} - \frac{n!}{2!(n-2)!} \frac{1}{n(n-1)} + \frac{n!}{3!(n-3)!} \frac{1}{n(n-1)(n-2)} - \]

\[\cdots + (-1)^{n-1} \frac{1}{n!} \]

\[= 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \cdots + (-1)^{n-1} \frac{1}{n!} \]
This yields

\[P(\#fp \geq 1) = \binom{n}{1} \frac{1}{n} - \binom{n}{2} \frac{1}{n(n-1)} + \binom{n}{3} \frac{1}{n(n-1)(n-2)} - \]

\[\cdots + (-1)^{n-1} \binom{n}{n} \frac{1}{n!} \]

\[= n \frac{1}{n} - \frac{n!}{2!(n-2)!} \frac{1}{n(n-1)} + \frac{n!}{3!(n-3)!} \frac{1}{n(n-1)(n-2)} - \]

\[\cdots + (-1)^{n-1} \frac{1}{n!} \]

\[= 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \cdots + (-1)^{n-1} \frac{1}{n!} \]

So

\[P(\#fp = 0) = 1 - P(\#fp \geq 1) \]

\[= 1 - \left(1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \cdots + (-1)^{n-1} \frac{1}{n!} \right) \]
\[
\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \cdots + (-1)^n \frac{1}{n!}
\]
\[
\approx \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \cdots + (-1)^n \frac{1}{n!} + \ldots
\]
(Make an infinite series.)

\[= e^{-1} \]

\[\approx .368 \]

The finite sum and the infinite series will be very close to each other for \(n \geq 6 \), so no matter how many people we have over 6 the probability that no one gets their hat back is always about 36.8%.
Is this deck random?

When shuffling a deck how many times must we shuffle in order for the deck to be “random?”

If we have no prior knowledge about the deck, then it essentially has a random order as far as we are concerned – if we were to choose a card at random from the deck, then we have a \(\frac{1}{52} \) probability of guessing what that card will be.

Similarly, if we wanted to draw a particular card from the deck then we would have a \(\frac{1}{52} \) probability of selecting our desired card from the deck.

However, if we had perfect knowledge of the state of the deck, then both of those probabilities would be 1.
Is this deck random?

When shuffling a deck how many times must we shuffle in order for the deck to be “random?” And what does “random” even mean?
Is this deck random?

When shuffling a deck how many times must we shuffle in order for the deck to be “random?” And what does “random” even mean?

If we have no prior knowledge about the deck, then it essentially has a random order as far as we are concerned – if we were to choose a card at random from the deck, then we have a \(\frac{1}{52} \) probability of guessing what that card will be be.
Is this deck random?

When shuffling a deck how many times must we shuffle in order for the deck to be “random?” And what does “random” even mean?

If we have no prior knowledge about the deck, then it essentially has a random order as far as we are concerned – if we were to choose a card at random from the deck, then we have a \(\frac{1}{52} \) probability of guessing what that card will be.

Similarly, if we wanted to draw a particular card from the deck then we would have a \(\frac{1}{52} \) probability of selecting our desired card from the deck.
Is this deck random?

When shuffling a deck how many times must we shuffle in order for the deck to be “random?” And what does “random” even mean?

If we have no prior knowledge about the deck, then it essentially has a random order as far as we are concerned – if we were to choose a card at random from the deck, then we have a \(\frac{1}{52} \) probability of guessing what that card will be.

Similarly, if we wanted to draw a particular card from the deck then we would have a \(\frac{1}{52} \) probability of selecting our desired card from the deck.

However, if we had perfect knowledge of the state of the deck, then both of those probabilities would be 1.
Random: An ordering of the deck is random if our knowledge about what card will be drawn (or where a card is located) is equivalent to the uniform distribution.
Random

Definition
Random: An ordering of the deck is random if our knowledge about what card will be drawn (or where a card is located) is equivalent to the uniform distribution.

Definition
Shuffling: A *shuffling* of a deck of cards is equivalent to applying a random permutation to the order of the cards.
Random

Definition
Random: An ordering of the deck is random if our knowledge about what card will be drawn (or where a card is located) is equivalent to the uniform distribution.

Definition
Shuffling: A shuffling of a deck of cards is equivalent to applying a random permutation to the order of the cards.

Definition
Uniform Distribution on Permutations: The uniform distribution on the set \mathcal{S}_n of permutations of a set of n elements is given by

$$U(\sigma) = \frac{1}{n!} \text{ for all } \sigma \in \mathcal{S}_n.$$
Random

Definition
Random: An ordering of the deck is random if our knowledge about what card will be drawn (or where a card is located) is equivalent to the uniform distribution.

Definition
Shuffling: A *shuffling* of a deck of cards is equivalent to applying a random permutation to the order of the cards.

Definition
Uniform Distribution on Permutations: The uniform distribution on the set \mathcal{S}_n of permutations of a set of n elements is given by

$$U(\sigma) = \frac{1}{n!} \text{ for all } \sigma \in \mathcal{S}_n.$$
We describe how close two probability distributions are to each other by calculating their *variation distance*:

Definition

Variation Distance: The *variation distance* between two probability distributions Q_1 and Q_2 is

$$
\|Q_1 - Q_2\| = \frac{1}{2} \sum_{\omega \in \Omega} |Q_1(\omega) - Q_2(\omega)|
$$
We describe how close two probability distributions are to each other by calculating their *variation distance*:

Definition

Variation Distance: The *variation distance* between two probability distributions Q_1 and Q_2 is

$$
\|Q_1 - Q_2\| = \frac{1}{2} \sum_{\omega \in \Omega} |Q_1(\omega) - Q_2(\omega)|
$$
Riffle Shuffle

Definition

We denote the probability distribution on a deck of n cards after k riffle shuffles by Rif^k.

Theorem

\[
\|\text{Rif}^k - U\| \leq 1 - \frac{1}{n} \prod_{i=1}^{k} \left(1 - \frac{i}{2}\right)
\]
Riffle Shuffle

Definition

We denote the probability distribution on a deck of n cards after k riffle shuffles by Rif^k.

To measure how effective the riffle shuffle is, we compute the variation distance between Rif^k and U:
Riffle Shuffle

Definition

We denote the probability distribution on a deck of n cards after k riffle shuffles by Rif^*k.

To measure how effective the riffle shuffle is, we compute the variation distance between Rif^*k and U:

[Skip a lot of work]
Riffle Shuffle

Definition

We denote the probability distribution on a deck of \(n \) cards after \(k \) riffle shuffles by \(\text{Rif}^{*k} \).

To measure how effective the riffle shuffle is, we compute the variation distance between \(\text{Rif}^{*k} \) and \(U \):

\[
\| \text{Rif}^{*k} - U \| \leq 1 - \prod_{i=1}^{n-1} \left(1 - \frac{i}{2^k} \right)
\]
For \(n = 52 \) cards and \(k = 1, \ldots, 20 \) shuffles we have the following:

<table>
<thead>
<tr>
<th>(k)</th>
<th>Variation Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000000</td>
</tr>
<tr>
<td>2</td>
<td>1.000000</td>
</tr>
<tr>
<td>3</td>
<td>1.000000</td>
</tr>
<tr>
<td>4</td>
<td>1.000000</td>
</tr>
<tr>
<td>5</td>
<td>1.000000</td>
</tr>
<tr>
<td>6</td>
<td>1.000000</td>
</tr>
<tr>
<td>7</td>
<td>0.9999946</td>
</tr>
<tr>
<td>8</td>
<td>0.9961774</td>
</tr>
<tr>
<td>9</td>
<td>0.9315278</td>
</tr>
<tr>
<td>10</td>
<td>0.7321139</td>
</tr>
<tr>
<td>11</td>
<td>0.4794958</td>
</tr>
<tr>
<td>12</td>
<td>0.2775419</td>
</tr>
<tr>
<td>13</td>
<td>0.1497335</td>
</tr>
<tr>
<td>14</td>
<td>0.07782249</td>
</tr>
<tr>
<td>15</td>
<td>0.03967886</td>
</tr>
<tr>
<td>16</td>
<td>0.02003503</td>
</tr>
<tr>
<td>17</td>
<td>0.01006689</td>
</tr>
<tr>
<td>18</td>
<td>0.005045847</td>
</tr>
<tr>
<td>19</td>
<td>0.002526031</td>
</tr>
<tr>
<td>20</td>
<td>0.001263794</td>
</tr>
</tbody>
</table>