Recall that the p-rank of a finite group G, $\text{rk}_p(G)$, is the largest rank of an elementary abelian p-subgroup of G and that the rank of a finite group G, $\text{rk}(G)$, is the maximum of $\text{rk}_p(G)$ taken over all primes p. We define the homotopy rank of a finite group G, $h(G)$, to be the minimal integer k such that G acts freely on a finite CW-complex $Y \cong S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}$. Benson and Carlson [3] have conjectured that for any finite group G, $\text{rk}(G) = h(G)$. The case of their conjecture, when G is a rank one group, is a direct result of Swan’s theorem [9]. Benson and Carlson’s conjecture has also been verified by Adem and Smith [1] for rank two p-groups as well as for all rank two finite simple groups except $\text{PSL}_3(\mathbb{F}_p)$ for p an odd prime.

Recall that $\text{Qd}(\mathbb{F}_p)$ is the semidirect product of $(\mathbb{Z}/p\mathbb{Z})^2$ by $\text{SL}_2(\mathbb{F}_p)$ with the natural action. We say that a group G does not involve $\text{Qd}(\mathbb{F}_p)$ if no subquotient of G is isomorphic to $\text{Qd}(\mathbb{F}_p)$. In addition, a group that does not involve $\text{Qd}(\mathbb{F}_p)$ is called $\text{Qd}(\mathbb{F}_p)$-free. Here we will verify Benson and Carlson’s conjecture for $\text{Qd}(\mathbb{F}_p)$-free finite groups of rank two. A result of Heller [5] states that if $h(G) = 2$, then $\text{rk}(G) = 2$; therefore, the conjecture holds for a given rank two group G, if G acts freely on a finite CW-complex $Y \cong S^{n_1} \times S^{n_2}$. We will find such actions using a recent result of Adem and Smith, but we need to include two definitions before stating their result.

Definition 1. Let $\varphi : BG \to BU(n)$ be a map and let $\alpha \in H^{2n}(BU(n), \mathbb{Z})$ be the Euler class (top Chern class) of $U(n)$. The Euler class in $H^{2n}(BG, \mathbb{Z})$ associated to φ is $\varphi^*(\alpha)$.

Definition 2. A cohomology class $\alpha \in H^*(BG, \mathbb{Z})$ is called effective if for each elementary abelian subgroup $E \subseteq G$ with $\text{rk}(E) = \text{rk}(G)$, $\text{res}^G_E(\alpha) \neq 0$.

Theorem 3 (Adem and Smith [1]). Let G be a finite group with $\text{rk}(G) = 2$. If the Euler class associated to some map $\varphi : BG \to BU(n)$ is effective, then $h(G) = 2$.

In light of Theorem 3, verifying Benson and Carlson’s conjecture for a rank two group G can be reduced to finding a particular map $\varphi : BG \to BU(n)$ with an effective Euler class. Two properties of maps from BG to $BU(n)$ will prove useful: homotopic maps have the same Euler class; and if G is a p-group for some prime p, then maps from BG to $BU(n)$ are in one-to-one correspondence with complex characters of degree n. The second property uses a result of Dwyer and Zabrodsky [4].

In light of the second property above, we will be relating maps from BG to $BU(n)$ to characters. To do so, we must introduce the following notation: G_p will denote a Sylow p-subgroup of G; $\text{Char}_n(G_p)$ will denote the set of degree n complex characters of G_p; and $\text{Char}_n^G(G_p)$ will denote the subset of $\text{Char}_n(G_p)$ consisting of those degree n complex characters of G_p that are the restrictions of class functions on G, meaning that they respect fusion in G.
We now define a map $\psi_G : [BG, BU(n)] \to \prod_{p||G} \text{Char}^G_n(G_p)$ by using the following composition:

$$[BG, BU(n)] \xrightarrow{\cong} \prod_{p||G} [BG, BU(n)]_p \xrightarrow{\cong} \prod_{p||G} [BG_p, BU(n)]_p \xrightarrow{\cong} \prod_{p||G} \text{Char}_n(G_p).$$

Notice that spaces in the center and at the right of the top row contain $BU(n)_p$, which is the p-completion of the space $BU(n)$. The left bijection is a result by Jackowski, McClure, and Oliver [6] while the right bijection follows is the previously mentioned property. The restriction map res is induced by the inclusion of the Sylow p-subgroups G_p into G. We notice that the image of the composition above lies in the subset $\prod_{p||G} \text{Char}^G_n(G_p)$; therefore, we let ψ_G be the composition above with the range restricted to $\prod_{p||G} \text{Char}_n(G_p)$. We get the following result concerning the map ψ_G:

Theorem 4 (Jackson [7, Theorem 1.3]). If G is a finite group of rank two, then the natural mapping $\psi_G : [BG, BU(n)] \to \prod_{p||G} \text{Char}^G_n(G_p)$ is a surjection.

Using Theorem 4, we see that a map from BG to $BU(n)$ with an effective Euler class can be demonstrated by giving appropriate characters in $\text{Char}^G_n(G_p)$ for each prime p dividing the order of G, which leads to Definition 5 and Theorem 6

Definition 5. Let G be a finite group, p a prime dividing $|G|$, and G_p a Sylow p-subgroup of G. A character χ of G_p is called a p-effective character of G if $\chi \in \text{Char}^G_n(G_p)$ and if for each elementary abelian subgroup $E \subseteq G_p$ with $\text{rk}(E) = \text{rk}(G)$, the trivial character of E is not an irreducible summand of the character $\chi|E$.

Theorem 6 (Jackson [8]). Let G be a finite group. If for each prime p dividing $|G|$ there exists a p-effective character of G, then there is a map $\varphi : BG \to BU(n)$ whose associated Euler class is effective. If in addition $\text{rk}(G) = 2$, then $b(G) = 2$.

Theorem 6 has reduced the process of showing that a rank two group has homotopy rank two to finding p-effective characters for each prime p dividing the order of the group. A definition from group theory is necessary in demonstrating the existence of p-effective characters.

Definition 7. Let G be a finite group, and let H and K be subgroups such that $H \subseteq K$. We say that H is strongly closed in K with respect to G if for each $g \in G$, $H^g \cap K \subseteq H$.

We are now able to show a sufficient condition for the existence of a p-effective character.

Proposition 8. Let G be a finite group, p a prime divisor of $|G|$, and G_p a Sylow p-subgroup of G. If $H \subseteq \mathbb{Z}(G_p)$ exists such that H is non-trivial and strongly closed in G_p with respect to G, then G has a p-effective character.

Recall that $\Omega_1(P)$, for a p-group P, is the subgroup of P generated by the order p elements of P. Notice that if P is abelian, then $\Omega_1(P)$ is elementary abelian. The next theorem shows that in many cases the sufficient condition may be applied.
Theorem 9 (Jackson [8]). Let G be a finite group, p a prime with $\text{rk}_p(G) = \text{rk}(G) = 2$, and $G_p \in \text{Syl}_p(G)$. If $\Omega_1(Z(G_p))$ is not strongly closed in G_p with respect to G, then either p is odd and $Qd(p)$ is involved in G, or $p = 2$ and G_2 is dihedral, semi-dihedral, or wreathed.

The prime 2 portion of Theorem 9 is a result of Alperin, Brauer, and Gorenstein [2, Proposition 7.1]. As a result of Theorem 9, a rank two finite group has a 2-effective character if its Sylow 2-subgroups are not dihedral, semi-dihedral or wreathed. The cases of dihedral, semi-dihedral and wreathed Sylow 2-subgroups are shown to have 2-effective characters in Theorem 9.

Theorem 10 (Jackson [8]). If G is a finite group with a dihedral, semi-dihedral, or wreathed Sylow 2-subgroup such that $\text{rk}(G) = 2$, then G has a 2-effective character.

Theorem 10 is shown by explicitly demonstrating the 2-effective character in each case.

Theorem 11 (Jackson). Let G be a finite group such that $\text{rk}(G) = 2$. G acts freely on a finite CW-complex $Y \simeq S^{n_1} \times S^{n_2}$ unless for some odd prime p, G involves $Qd(p)$. In particular, if G is a rank two group that is $Qd(p)$-free for each odd prime p, then $h(G) = 2$.

We end by pointing out that for an odd prime p, $Qd(p)$ does not have a p-effective character.

References