We will use the notation and names laid out by Broto, Levi and Oliver in [2].

Definition 1.

1. A category \mathcal{F} over a p-group S is a category with objects the subgroups of S and morphisms in \mathcal{F} are group monomorphisms between the subgroups.
2. A category \mathcal{F} over S is called a restrictive category if for each $P' \leq P \leq S$ and $Q' \leq Q \leq S$, and each $\varphi \in \text{Hom}_\mathcal{F}(P, Q)$ such that $\varphi(P') \leq Q'$, $\varphi|_{P'} \in \text{Hom}_\mathcal{F}(P', Q')$.
3. For a restrictive category \mathcal{F} over S and any subgroup $A \leq \text{Aut}(S)$, $\langle \mathcal{F}, A \rangle$ is the smallest restrictive category over S which contains \mathcal{F} together with all automorphisms in A and their restrictions.

Parts 2 and 3 of the definition are from Definition 3.2 of [1].

For notation we will use (S, \mathcal{F}) to mean a \mathcal{F} is a (restrictive) category over S.

Definition 2. A saturated fusion system on a finite p-group P is a restrictive category \mathcal{F} on P such that the following properties hold:

- **SFS1:** For any two subgroups Q, R of P, $\text{Hom}_P(Q, R) \subseteq \text{Hom}_\mathcal{F}(Q, R)$.
- **SFS2:** If $Q \subseteq P$ and $\varphi \in \text{Hom}_\mathcal{F}(Q, P)$ are such that $\varphi(Q)$ is fully \mathcal{F}-normalized, φ can be extended to $\bar{\varphi} : N_\varphi \to P$ where $N_\varphi = \{g \in N_P(Q) | \varphi c g \varphi^{-1} \in \text{Aut}_P(\varphi(Q)) \}$.
- **SFS3:** $\text{Aut}_P(P) \in \text{Syl}(\text{Aut}_\mathcal{F}(P))$.

Definition 3. Let (S, \mathcal{F}) and (P, \mathcal{F}') be categories with $P \leq S$.
(1) We say that P is strongly \mathcal{F}-closed if for any morphism $\varphi : Q \to Q'$ in \mathcal{F}, $\varphi|_{P\cap Q}(P \cap Q) \leq P$.

(2) We say that \mathcal{F} normalizes \mathcal{F}' if P is strongly \mathcal{F}-closed and for every isomorphism $\varphi : Q \to Q'$ in \mathcal{F} and any two subgroups R, R' of $Q \cap P$ we have

$$\varphi \circ \text{Hom}_{\mathcal{F}}(R, R') \circ \varphi^{-1}|_{\varphi(R)} \subseteq \text{Hom}_{\mathcal{F}'}(\varphi(R), \varphi(R')).$$

(3) We say \mathcal{F}' is normal in \mathcal{F} if $(P, \mathcal{F}') \subseteq (S, \mathcal{F})$ and \mathcal{F} normalizes \mathcal{F}'. We denote this $\mathcal{F}' \leq \mathcal{F}$ or $(P, \mathcal{F}') \leq (S, \mathcal{F})$.

Parts two and three here are in section 3 of [3]. (Ref. for part 1)

Definition 4. Let (S, \mathcal{F}) be a restrictive category and $P \leq S$ be strongly \mathcal{F}-closed. We use $\mathcal{F}|_P$ to denote the restrictive category on P that is the full subcategory of \mathcal{F} whose objects are subgroups of P.

Remark 5. If $(P, \mathcal{F}') \leq (S, \mathcal{F})$ are both categories then for $Q \leq P$, $\text{Aut}_{\mathcal{F}'}(Q) \leq \text{Aut}_{\mathcal{F}}(Q)$ and so $(P, \mathcal{F}') \leq (P, \mathcal{F}|_P)$

Remark 6. If (P, \mathcal{F}') and (H, \mathcal{D}) are two restrictive categories that are normal in (S, \mathcal{F}), then $(P, \mathcal{F}') \cap (H, \mathcal{D})$, which is the restrictive category over $P \cap H$ whose morphisms are all of the morphisms contained in both \mathcal{F}' and \mathcal{D}, is normal in (S, \mathcal{F}).

Definition 7 ([3, Definition 4.1]). A saturated fusion system (S, \mathcal{F}) is called *simple* if it has no proper non trivial normal saturated fusion systems.

Definition 8. A saturated fusion system (S, \mathcal{F}) is called *elementary* if S has no proper nontrivial strongly \mathcal{F}-closed subgroups.

Remark 9. Let (S, \mathcal{F}) be a saturated fusion system. A nontrivial proper subgroup $P \subset S$ is strongly \mathcal{F}-closed if and only if the restrictive category $(P, \mathcal{F}|_P)$ is normalized by \mathcal{F}.

Definition 10. For a category (S, \mathcal{F}) let $\text{Aut}_{\text{fus}}(S, \mathcal{F})$ be the group of automorphisms in $\text{Aut}(S)$ which normalize (S, \mathcal{F}). (As for any subgroup $A \leq \text{Aut}(S)$, A is a category over S.)
This definition is used in [1], although formulated slightly differently.

Definition 11. Let \((S, \mathcal{F})\) be a restrictive category. We say that a restrictive category \((P, \mathcal{F}') \subseteq (S, \mathcal{F})\) is characteristic if \((P, \mathcal{F}') \trianglelefteq (S, \mathcal{F})\) and \(\text{Aut}_{\text{fus}}(S, \mathcal{F})\) normalizes \((P, \mathcal{F}')\). We denote this \((P, \mathcal{F}')\) char \((S, \mathcal{F})\).

Definition 12. Let \((S, \mathcal{F})\) be a saturated fusion system. We say that a proper subgroup \(P \subseteq S\) is ingrained if \(P\) is strongly \(\mathcal{F}\)-closed and \(P\) is fixed by \(\text{Aut}_{\text{fus}}(S, \mathcal{F})\). We would say then that \(P\) is \(\mathcal{F}\)-ingrained.

Remark 13. Let \((S, \mathcal{F})\) be a saturated fusion system. A nontrivial proper subgroup \(P \subset S\) is \(\mathcal{F}\)-ingrained if and only if the restrictive category \((P, \mathcal{F}|_P)\) is characteristic in \((S, \mathcal{F})\).

Theorem 14. Let \((P, \mathcal{F}')\) and \((S, \mathcal{F})\) be saturated fusion systems. If \((P, \mathcal{F}') \trianglelefteq (S, \mathcal{F})\), then \(\mathcal{F}|_P = \langle \mathcal{F}', \text{Aut}_{\mathcal{F}}(P) \rangle\).

The proof of Theorem 14 is similar to the proof of Lemma 3.4 (b) of [1].

Proof. \(\mathcal{F}|_P = \langle \mathcal{F}', \text{Aut}_{\mathcal{F}}(P) \rangle\) is equivalent to every morphisms \(\mathcal{F}|_P\) being a composition of morphisms in \(\mathcal{F}'\) and restrictions of elements in \(\text{Aut}_{\mathcal{F}}(P)\). By Alperin’s fusion theorem for saturated fusion systems it is enough to show that for every \(Q \leq S\) and every \(\varphi \in \text{Aut}_{\mathcal{F}}(Q)\), \(\varphi|_{P \cap Q}\) is a composition of morphisms in \(\mathcal{F}'\) and restrictions of elements in \(\text{Aut}_{\mathcal{F}}(P)\). Since \(P\) is strongly \(\mathcal{F}\)-closed \(\varphi|_{P \cap Q} \in \text{Aut}_{\mathcal{F}}(P \cap Q)\); therefore, it is enough to show that for any subgroup \(Q \leq P\), every element of \(\text{Aut}_{\mathcal{F}}(Q)\) is a composition of morphisms in \(\mathcal{F}'\) and restrictions of elements in \(\text{Aut}_{\mathcal{F}}(P)\).

Clearly \(\text{Aut}_{\mathcal{F}}(P) \subseteq \langle \mathcal{F}', \text{Aut}_{\mathcal{F}}(P) \rangle\). Let \(Q \subseteq P\) and assume inductively that for all \(Q' \leq P\) with \(|Q'| > |Q|\), \(\text{Aut}_{\mathcal{F}}(Q') \subseteq \langle \mathcal{F}', \text{Aut}_{\mathcal{F}}(P) \rangle\). Fix \(Q\) and \(\varphi \in \text{Aut}_{\mathcal{F}}(Q)\). \(Q\) must be \(\mathcal{F}'\)-conjugate to a fully normalized (in \(\mathcal{F}'\)) subgroup \(H\) of \(P\). Say \(\psi : Q \rightarrow H\) is an isomorphism in \(\mathcal{F}'\) and let \(\varphi' = \psi \circ \varphi \circ \psi^{-1} \in \text{Aut}_{\mathcal{F}}(H)\). Since \(H\) is fully normalized (in \(\mathcal{F}'\)), \(\text{Aut}_{\mathcal{F}}(H) \in \text{Syl}_p(\text{Aut}_{\mathcal{F}}(H))\).
Consider $K = \varphi' \text{Aut}_P(H)(\varphi')^{-1} = \{\varphi' c_g(\varphi')^{-1} \in \text{Aut}_F(H) \mid g \in N_P(H)\}$. Clearly $|K| = |\text{Aut}_P(H)|$; thus, K is also in $\text{Syl}_p(\text{Aut}_F(H))$. So there exists $\chi \in \text{Aut}_F(H)$ such that $\chi K \chi^{-1} = \text{Aut}_P(H)$.

So $N_{\chi \varphi'} \supseteq \{g \in N_P(H) \mid (\chi \varphi') c_g (\chi \varphi')^{-1} \in \text{Aut}_P(H)\} = N_P(H)$. By the extension axiom for saturated fusion systems, $\chi \circ \varphi'$ can be extended to a homomorphism $\lambda \in \text{Hom}_F(N_P(H), P)$. By the induction hypothesis (since λ will be the restriction of an F-automorphism of some subgroup of P containing $N_P(H)$), $\lambda \in \langle F', \text{Aut}_F(P) \rangle$. So also $\chi \circ \varphi' = \chi \circ \psi^{-1} \circ \varphi \circ \psi \in \langle F', \text{Aut}_F(P) \rangle$. Since χ and ψ are both morphisms in F', $\varphi \in \langle F', \text{Aut}_F(P) \rangle$. □

Lemma 15. Let (P, F') and (S, F) be saturated fusion systems with $(P, F') \subseteq (S, F)$. Suppose that K is a proper subgroup of P, then K is strongly F-closed if and only if K is strongly $F'|_P$-closed. In addition suppose that (H, D) is a restrictive category with $H \subseteq P$, then D is normalized by F if and only if D is normalized by $F'|_P$.

Proof. Clearly if K is strongly F-closed, then K is strongly $F'|_P$-closed. Since any morphism in F must take any element of K to an element in P (since P is strongly F-closed), if K is strongly $F'|_P$-closed it must also be strongly F-closed.

Clearly if F normalizes D then so does $F|_P$. Assume that $F|_P$ normalizes D. Let $\varphi : Q \to Q'$ be a morphism in F. $\varphi|_{H \cap Q}(H \cap Q) = (\varphi|_P)|_{H \cap Q}(H \cap Q) \leq H$. If $R, R' \leq H \cap Q$, $\varphi \circ \text{Hom}_D(R, R') \circ \varphi^{-1}|_{\varphi(R)} = \varphi|_P \circ \text{Hom}_F(R, R') \circ (\varphi^{-1}|_P)|_{\varphi(R)} \subseteq \text{Hom}_F(\varphi(R), \varphi(R'))$. □

Lemma 16. Let (P, F') and (S, F) be saturated fusion systems and let (H, D) a restrictive category. If (H, D) char $(P, F') \subseteq (S, F)$, then $(H, D) \subseteq (S, F)$.

Proof. By Lemma 15, it is enough to show that D is normalized by $F|_P$. By Theorem 14, we have that $F|_P = \langle F', \text{Aut}_F(P) \rangle$. Since (H, D) char (P, F'), D is normalized by F' and by $\text{Aut}_{\text{fus}}(P, F')$. Clearly $\text{Aut}_F(P) \subseteq \text{Aut}_{\text{fus}}(P, F')$ and so the result follows. □

Proposition 17. Let (P, F') and (S, F) be saturated fusion systems with $(P, F') \subseteq (S, F)$. Let $H \subset P$ be a proper nontrivial subset. If H is F'-ingrained, then H is strongly F-closed.
Proof. By Lemma 15, it is enough to show that H strongly $\mathcal{F}|_P$-closed. By Theorem 14, it is enough to show that H is both strongly \mathcal{F}'-closed and is fixed by Aut$_\mathcal{F}(P)$. Since H is \mathcal{F}'-ingrained, H is strongly \mathcal{F}'-closed by definition. In addition since \mathcal{F}' is normalized by \mathcal{F}, Aut$_\mathcal{F}(P) \subset$ Aut$_{\text{fus}}(P, \mathcal{F}')$. Thus again by definition H is fixed by Aut$_\mathcal{F}(P)$. □

Remark 18. It is also easy to show that the property of being characteristic is transitive for saturated fusion systems. (Write this out.)

Remark 19. For two restrictive categories (H, \mathcal{D}) and (P, \mathcal{F}), $(H, \mathcal{D}) \times (P, \mathcal{F})$ is the direct product and is again a restrictive category over $H \times P$. The direct product of saturated fusion systems is again a saturated fusion system.

Lemma 20. Let (S, \mathcal{F}) be a restrictive category. If P and Q are strongly \mathcal{F}-closed subgroups of S, then $P \cap Q$ is strongly \mathcal{F}-closed.

Lemma 21. Let (S, \mathcal{F}) be a saturated fusion system, such that $S = S_1 \times S_2 \times \cdots \times S_n$ with each S_i strongly \mathcal{F}-closed, then for each $i = 1, 2, \ldots, n$ the restrictive category $(S_i, \mathcal{F}|_{S_i})$ is a saturated fusion system and is normal in (S, \mathcal{F}).

Proof. For a given i, let the restrictive category $(S_i, \mathcal{F}|_{S_i})$ be (P, \mathcal{F}'). Let $\tilde{S} = S_1 \times \cdots \times S_{i-1} \times S_{i+1} \times \cdots \times S_n$. (Using the formulation of saturated fusion systems given by Linckelmann.) Let $A = \{ \varphi \in \text{Aut}_\mathcal{F}(S) | \varphi|_S = \text{id}_S \}$. Clearly since P is strongly \mathcal{F}-closed and $\tilde{S} \subseteq C_S(P)$, Aut$_{\mathcal{F}'}(P) \cong A$. Since \tilde{S} is strongly \mathcal{F}-closed it follows that $A \subseteq$ Aut$_\mathcal{F}(S)$. Also $A \cap$ Aut$_S(S) \cong$ Aut$_P(P)$ which then implies that Aut$_P(P)$ is a Sylow p-subgroup of Aut$_{\mathcal{F}'}(P)$ since Aut$_S(S)$ is a Sylow p-subgroup of Aut$_\mathcal{F}(S)$. Now let $\varphi : Q \rightarrow P$ be a morphism in \mathcal{F}' such that $\varphi(Q)$ is fully \mathcal{F}'-normalized. Since P is strongly \mathcal{F}-closed and $\tilde{S} \subseteq C_S(R)$ for any subgroup $R \subseteq P$, we see that $\varphi(Q)$ is fully \mathcal{F}-normalized and φ is a morphism in \mathcal{F}. Since (S, \mathcal{F}) is a saturated fusion system φ extends to a morphism $\psi : N_\varphi^S \rightarrow S$ in \mathcal{F}. Then $\psi|_P : N_\varphi^S \cap P \rightarrow P$ is a morphism in \mathcal{F}' also extending φ. It is enough no to realize that $N_\varphi^S \cap P = N_\varphi^P$. □
Theorem 22. Let (S, \mathcal{F}) be a saturated fusion system. If S has no proper nontrivial \mathcal{F}-ingrained subgroup, then (S, \mathcal{F}) is either an elementary saturated fusion system or S is the direct product of some number of isomorphic subgroups S_i such that the restrictive categories $(S_i, \mathcal{F}|_{S_i})$ are isomorphic elementary saturated fusion systems.

Proof. If S does not have a proper non-trivial strongly \mathcal{F}-closed subgroup, (S, \mathcal{F}) is an elementary saturated fusion system by definition. Suppose on the other hand that S has a proper non-trivial strongly \mathcal{F}-closed subgroup. Choose a minimal nontrivial strongly \mathcal{F}-closed subgroup $H \subset S$. Consider all of the subgroups of S of the form $\prod_{i=1}^{n} H_i$ where each $H_i \cong H$ and H_i is strongly \mathcal{F}-closed in S. Let M be such a subgroup of the largest possible n. Clearly M is strongly \mathcal{F}-closed. Let $\varphi \in \text{Aut}_{\text{fus}}(S, \mathcal{F})$ and $1 \leq i \leq n$. $\varphi(H_i) \cong (H_i) \cong (H)$ and $\varphi(H_i)$ is strongly \mathcal{F}-closed.

Suppose that $\varphi(H_i) \not\subseteq M$. Then $\varphi(H_i) \cap M$ is a strongly \mathcal{F}-closed subgroup of S which is smaller than H and so the intersection must be trivial. Thus $\varphi(H_i) \times M \subseteq S$ is of the same type as M but with n one larger. implies that for any φ This contradicts the choice of n. So $\varphi(H_i) \subseteq M$. And so φ normalizes M; therefore, M is \mathcal{F}-ingrained which implies that $M = S$.

Notice that in the above argument there is contained the argument that if $\varphi \in \text{Aut}_{\text{fus}}(S, \mathcal{F})$ then for any i, $\varphi(H_i) = (H_j)$ for some j.

By Lemma 21, we see then that for each i, $(H_i, \mathcal{F}|_{H_i})$ is a saturated fusion subsystem normal in (S, \mathcal{F}). Suppose that for some $i \neq j$, $(H_i, \mathcal{F}|_{H_i})$ and $(H_j, \mathcal{F}|_{H_j})$ are not isomorphic saturated fusion systems. This implies that there cannot exist a $\varphi \in \text{Aut}_{\text{fus}}(S, \mathcal{F})$ with $\varphi(H_i) = \varphi(H_j)$. So let Q be the subset of S generated by all images under elements $\varphi \in \text{Aut}_{\text{fus}}(S, \mathcal{F})$ of H_i. Clearly Q is a proper nontrivial subset of S and Q is \mathcal{F}-ingrained. This contradicts the hypotheses of the theorem, so for each $i \neq j$ $(H_i, \mathcal{F}|_{H_i})$ and $(H_j, \mathcal{F}|_{H_j})$ must be isomorphic saturated fusion systems. □
Corollary 23. Let \((S, \mathcal{F})\) be a saturated fusion system. If \(P\) is a minimal proper non-trivial strongly \(\mathcal{F}\)-closed subgroup of \(S\) and \((P, \mathcal{F}')\) is any saturated fusion system over \(P\) that is normalized by \(\mathcal{F}\), then \((P, \mathcal{F}')\) is either elementary or \(P\) is the direct product of some number of isomorphic groups \(S_i\) such that the restrictive \((S_i, \mathcal{F}'|_{S_i})\) are isomorphic elementary saturated fusion systems.

Proof. By Theorem 22, it is enough to show that \(P\) does not contain a proper non-trivial \(\mathcal{F}'\)-ingrained subgroup. Suppose that \(P\) has a proper non-trivial \(\mathcal{F}'\)-ingrained subgroup \(H\). Then since \((P, \mathcal{F}') \trianglelefteq (S, \mathcal{F})\), \(H\) must be a non-trivial strongly \(\mathcal{F}\)-closed subgroup of \(S\), which contradicts the minimality of \(P\).

An important theorem of Linckelmann, shows that if a simple fusion system is the saturated fusion system of some finite group, then it is the fusion system of a finite simple group.

Theorem 24 ([3, Proposition 4.2]). Let \((P, \mathcal{F})\) be a simple saturated fusion. Suppose that \(\mathcal{F} = \mathcal{F}_P(G)\) for some finite group \(G\) with \(P \in \text{Syl}_p(G)\). If \(O_{p'}(G) = 1\) and if \(\mathcal{F}_P(G) \neq \mathcal{F}_P(H)\) for any proper subgroup \(H\) of \(G\) with \(P \in \text{Syl}_p(H)\), then \(G\) is simple. In particular, if \(G\) has minimal order such that \(P \in \text{Syl}_p(G)\) and such that \(\mathcal{F} = \mathcal{F}_P(G)\), then \(G\) is simple.

Theorem 25. Let \((P, \mathcal{F})\) be an elementary saturated fusion system such that \((P, \mathcal{F})\) has no proper normal fusion system of the form \((P, \mathcal{F}')\). Suppose \(\mathcal{F} = \mathcal{F}_P(G)\) for some finite group \(G\) with \(P \in \text{Syl}_p(G)\). If \(O_{p'}(G) = 1\) and if \(\mathcal{F}_P(G) \neq \mathcal{F}_P(H)\) for any proper subgroup \(H\) of \(G\) with \(P \in \text{Syl}_p(H)\), then \(G\) is simple. In particular, if \(G\) has minimal order such that \(P \in \text{Syl}_p(G)\) and such that \(\mathcal{F} = \mathcal{F}_P(G)\), then \(G\) is simple.

Proof. Suppose \(O_{p'}(G) = 1\) and \(\mathcal{F}_P(G) \neq \mathcal{F}_P(H)\) for any proper subgroup \(H\) of \(G\) with \(P \in \text{Syl}_p(H)\). Suppose that \(G\) is not simple. Let \(N\) be the minimal non-trivial normal subgroup of \(G\). If \(Q = N \cap P\), then \(Q \in \text{Syl}_p(N)\) and \(Q\) is strongly \(\mathcal{F}\)-closed. Since \(O_{p'}(G) = 1\), \(N\) is not a \(p'\)-group; thus, \(Q = P\) since \((P, \mathcal{F})\) is elementary. We have \((P, \mathcal{F}_P(N)) \trianglelefteq (P, \mathcal{F}_P(G)) = (P, \mathcal{F})\). However this is not allowed unless the fusion systems are the same, and so \((P, \mathcal{F}_P(N)) = (P, \mathcal{F})\). Therefore, by hypothesis \(N = G\), showing that \(G\) is
Let G be a finite group of minimal order such that $P \in \text{Syl}_p(G)$ and such that $\mathcal{F} = \mathcal{F}_P(G)$. Then $O_{p'}(G) = 1$, because the canonical map $G \to G/O_{p'}(G)$ induces an isomorphism of saturated fusion systems. By the minimality of G, we have that $\mathcal{F}_P(G) \neq \mathcal{F}_P(H)$ for any proper subgroup H of G with $P \in \text{Syl}_p(H)$. The second statement, thus, follows from the first.

Also we can use a similar Theorem to Theorem 9.2 of [2].

Theorem 26 (See [2, Theorem 9.2]). Let (P, \mathcal{F}) be an elementary saturated fusion system over a non-abelian p-group S. Suppose $\mathcal{F} = \mathcal{F}_P(G)$ for some finite group G with $P \in \text{Syl}_p(G)$. If $O_{p'}(G) = 1$ and if $\mathcal{F}_P(G) \neq \mathcal{F}_P(H)$ for any proper subgroup H of G with $P \in \text{Syl}_p(H)$, then G is a finite almost simple group or G has a proper normal subgroup H containing P (as a Sylow subgroup) that is the product of isomorphic finite simple groups and $H \trianglelefteq G \subseteq \text{Aut}(H)$.

Proof. Suppose $O_{p'}(G) = 1$ and $\mathcal{F}_P(G) \neq \mathcal{F}_P(H)$ for any proper subgroup H of G with $P \in \text{Syl}_p(H)$. Let N be the minimal non-trivial normal subgroup of G. If $Q = N \cap P$, then $Q \in \text{Syl}_p(N)$ and Q is strongly \mathcal{F}-closed. Since $O_{p'}(G) = 1$, N is not a p'-group; thus, $Q = P$ since (P, \mathcal{F}) is elementary.

By the minimality of N above normal subgroups, N is the product of isomorphic non-abelian simple groups which are permuted transitively by $N_G(N) = G$ (otherwise N is not minimal). Thus $C_G(N) \cap N = 1$, and so $C_G(N) = 1$ by the assumption that $O_{p'}(G) = 1$. This shows that $H \trianglelefteq G \subseteq \text{Aut}(H)$. If H itself is simple, then G is almost simple. If on the other hand, H is the product of simple groups and is normal in G.

???
Theorem 27. Let \((P, \mathcal{F})\) be a saturated fusion system such that \(P\) has no proper nontrivial \(\mathcal{F}\)-ingrained subgroup. Suppose \(\mathcal{F} = \mathcal{F}_P(G)\) for some finite group \(G\) with \(P \in \text{Syl}_p(G)\). If \(O_{p'}(G) = 1\) and if \(\mathcal{F}_P(G) \neq \mathcal{F}_P(H)\) for any proper subgroup \(H\) of \(G\) with \(P \in \text{Syl}_p(H)\), then \(G\) is a direct product of simple groups. In particular, if \(G\) has minimal order such that \(P \in \text{Syl}_p(G)\) and such that \(\mathcal{F} = \mathcal{F}_P(G)\), then \(G\) is a direct product of simple groups.

Proof. By Theorem 22, \(P = S_1 \times S_2 \times \cdots \times S_n\), where each \((S_i, \mathcal{F}|_{S_i})\) are isomorphic and elementary saturated fusion systems.

Suppose \(O_{p'}(G) = 1\) and \(\mathcal{F}_P(G) \neq \mathcal{F}_P(H)\) for any proper subgroup \(H\) of \(G\) with \(P \in \text{Syl}_p(H)\).

For each \(i\), let \(N_i = \langle S_i^G \rangle\). Each \(N_i\) is normal in \(G\) by definition and is a minimal normal subgroup. If \(\emptyset \neq H \subseteq N_i\) is normal in \(H\), then \(H \cap S_i\) is strongly \(\mathcal{F}\)-closed and is not empty since \(O_{p'}(G) = 1\). Thus \(H = N_i\).

So each \(N_i\) is characteristically simple. If \(S_j \cap N_i \neq \emptyset\), then \(N_j = N_i\).

\[\square\]

References

Grove City College, 100 Campus Drive, Grove City, PA 16127, majackson@gcc.edu